Quantitative Analyzes and Forecasting
- Kredity: 5
- Ukončenie: Skúška
- Rozsah: 2P + 2C
- Semester: zimný
- Ročník: 2
- Podnikovohospodárska fakulta Ekonomickej univerzity v Bratislave so sídlom v Košiciach
Vyučujúci
Zaradený v študijných programoch
Výsledky vzdelávania
Hlavným vzdelávacím cieľom predmetu je:
• oboznámiť študentov s princípmi, poznatkami, hlavnými cieľmi z oblasti kvantitatívnych analýz a základných prognostických postupov,
• oboznámiť študentov s etapami realizácie kvantitatívnej analýzy, typmi metód a prístupov ku kvantitatívnej analýze a prognóze,
• naučiť študentov prakticky realizovať relevantné analýzy a prognózy,
• oboznámiť sa s primárnymi a sekundárnymi zdrojmi údajov, ktoré sú vhodné na realizáciu analýz a prognóz v oblasti obchodu a marketingu,
• získavať poznatky o možnostiach kvantitatívneho spracovania dát pomocou softvérových produktov,
• naučiť študentov správnym spôsobom uskutočniť závery z realizovaných analýz a prognóz,
• získanie analytického prístupu k riešeniu ekonomických problémov, ktoré môžu aplikovať do oblasti ekonomickej praxe.
Vedomosti:
Úspešný absolvent predmetu získa vedomosti z oblasti kvantitatívnej analýzy a základov prognostických prístupov v oblasti marketingu, z oblasti primárnych a sekundárnych zdrojov údajov pre obchod a marketing, o spôsobe tvorby súborov, spôsobe vyhodnocovania kvalitatívnych a kvantitatívnych údajov, aplikácie softvérových produktov pri spracovávaní analýz, vyvodzovaní záverov z realizovaných analytických postupov, ktoré dokáže aplikovať pri rozhodovaní v rôznych oblastiach ekonomickej praxe a patrične ich využije pri štúdiu ďalších predmetov a spracovávaní záverečných prác.
Zručnosti:
Absolvent je schopný realizovať, uskutočniť kroky k uskutočneniu kvantitatívnej analýzu v oblasti obchodu a marketingu, aplikovať vhodné metódy analýzy kvalitatívnych a kvantitatívnych údajov primárneho resp. sekundárneho výskumu, využíva pri riešení analýz vhodný štatistický softvérový produkt, vyvodzuje relevantné závery z aplikovaných kvantitatívnych postupov. Študent aplikuje získané teoretické poznatky na praktické riešenie konkrétnych úloh z oblasti kvantitatívnej analýzy a elementárnej tvorby prognóz.
Kompetentnosti:
Po absolvovaní predmetu študent dokáže riešiť a analyzovať problémy súvisiace s aplikovaním jedno- a viacrozmerných kvantitatívnych metód pre analýzach v marketingu a obchode, posudzovať súvislosti aplikovaných metód a prognóz, dokáže analyticky myslieť, uplatňovať tvorivé myslenie pri získavaní a spracovávaní relevantných údajov, vie sa orientovať v základných databázach pre výber ukazovateľov sekundárneho výskumu, realizovať kvantitatívnu analýzu a vyhodnotiť jej závery, vhodným spôsobom prezentovať závery a odporúčania pre ďalšie obdobia.
Stručná osnova predmetu
Prednášky:
1. Základné a pokročilé metódy kvantitatívnej analýzy.
2. Empirické a grafické prístupy k analýze kategoriálnych, ordinálnych a kardinálnych znakov.
3. Pokročilé prístupy k spracovaniu a analýze dát, riešenie problémov pri spracovaní dát.
4. Aplikácia induktívnej štatistiky, softvérové riešenia.
5. Skúmanie závislostí kvalitatívnych a kvantitatívnych znakov, softvérové riešenia.
6. Lineárne a nelineárne regresné modely.
7. Viacrozmerné regresné modely.
8. Regresné modely a ich využitie pri prognózovaní.
9. Jednofaktorová a viacfaktorová analýza rozptylu.
10. Viacfaktorová analýza rozptylu, softvérové riešenia.
11. Neparametrická analýza rozptylu.
12. Prezentácia výsledkov, výstupov softvérových riešení úloh kvalitatívnej a kvantitatívnej analýzy a prognóz.
13. Prehľad ďalších prístupov ku kvantitatívnej analýze, softvérové produkty.
Cvičenia:
1. Aplikácia vhodných základných a pokročilých metód kvantitatívnej analýzy.
2. Empirické a grafické prístupy k analýze kategoriálnych, ordinálnych a kardinálnych znakov, riešenie praktických prípadov.
3. Praktické prístupy k pokročilému spracovaniu a analýze dát, riešenie problémov pri spracovaní dát.
4. Aplikácia induktívnej štatistiky, softvérové riešenia, praktické príklady aplikácie induktívnej štatistiky.
5. Skúmanie závislostí kvalitatívnych a kvantitatívnych znakov v prostredí softvérového produktu.
6. Lineárne a nelineárne regresné modely, príklady a možné riešenia pomocou softvérového produktu.
7. Viacrozmerné regresné modely, riešenie praktických úloh pomocou softvérového produktu.
8. Regresné modely a ich využitie pri prognózovaní.
9. Jednofaktorová a viacfaktorová analýza rozptylu.
10. Viacfaktorová analýza rozptylu, praktické prípady aplikácie metód v prostredí softvérového produktu.
11. Neparametrická analýza rozptylu, riešenie praktických prípadov v prostredí softvérového produktu.
12. Prezentácia semestrálneho zadania a diskusia.
13. Prezentácia semestrálneho zadania a diskusia.
Odporúčaná literatúra
1. STOCKEMER, D. (2019). Quantitative Methods for the Social Sciences: A Practical Introduction with Examples in SPSS and Stata. Springer, 2019. ISBN-13: 978-3319991177.
2. MOORE, D., McCABE, G., CRAIG, B., ALWAN, L. (2020). The Practice of Statistics for Business and Economics. WH Freeman, 2020. ISBN-13: 978-1319324810.
3. CHRISTENSEN, R. (2020). Analysis of Variance, Design, and Regression: Linear Modeling for Unbalanced Data. Routledge, 2020. ISBN-13: 978-0367737405.
4. MAXWELL, R. (1999). A Student´s Guide to Analysis of Variances. Routledge: Student edition, 1999. ISBN-13: 978-0415165655.
5. COHEN, J., WEST, S.G., AIKEN, L.S., COHEN, P. (2002). Applied Multiple Regression/Correlation Analysis for the Behavioral Sciences. Routledge, 2002. ISBN-13-978-0805822236.
Sylabus predmetu
Prednášky: 1. Základné a pokročilé metódy kvantitatívnej analýzy. 2. Empirické a grafické prístupy k analýze kategoriálnych, ordinálnych a kardinálnych znakov. 3. Pokročilé prístupy k spracovaniu a analýze dát, riešenie problémov pri spracovaní dát. 4. Aplikácia induktívnej štatistiky, softvérové riešenia. 5. Skúmanie závislostí kvalitatívnych a kvantitatívnych znakov, softvérové riešenia. 6. Lineárne a nelineárne regresné modely. 7. Viacrozmerné regresné modely. 8. Regresné modely a ich využitie pri prognózovaní. 9. Jednofaktorová a viacfaktorová analýza rozptylu. 10. Viacfaktorová analýza rozptylu, softvérové riešenia. 11. Neparametrická analýza rozptylu. 12. Prezentácia výsledkov, výstupov softvérových riešení úloh kvalitatívnej a kvantitatívnej analýzy a prognóz. 13. Prehľad ďalších prístupov ku kvantitatívnej analýze, softvérové produkty. Cvičenia: 1. Aplikácia vhodných základných a pokročilých metód kvantitatívnej analýzy. 2. Empirické a grafické prístupy k analýze kategoriálnych, ordinálnych a kardinálnych znakov, riešenie praktických prípadov. 3. Praktické prístupy k pokročilému spracovaniu a analýze dát, riešenie problémov pri spracovaní dát. 4. Aplikácia induktívnej štatistiky, softvérové riešenia, praktické príklady aplikácie induktívnej štatistiky. 5. Skúmanie závislostí kvalitatívnych a kvantitatívnych znakov v prostredí softvérového produktu. 6. Lineárne a nelineárne regresné modely, príklady a možné riešenia pomocou softvérového produktu. 7. Viacrozmerné regresné modely, riešenie praktických úloh pomocou softvérového produktu. 8. Regresné modely a ich využitie pri prognózovaní. 9. Jednofaktorová a viacfaktorová analýza rozptylu. 10. Viacfaktorová analýza rozptylu, praktické prípady aplikácie metód v prostredí softvérového produktu. 11. Neparametrická analýza rozptylu, riešenie praktických prípadov v prostredí softvérového produktu. 12. Prezentácia semestrálneho zadania a diskusia. 13. Prezentácia semestrálneho zadania a diskusia.
Podmienky na absolvovanie predmetu
samostatná práca, písomná práca,
kombinovaná skúška
• písomná previerka – 30 %
• semestrálne zadanie – 10 %
• kombinovaná skúška – 60 %
Pracovné zaťaženie študenta
• účasť na prednáškach – 26 hod.
• účasť na cvičeniach – 26 hod.
• príprava na cvičenia – 13 hod.
• príprava na písomný test – 26 hod.
• príprava semestrálneho zadania – 13 hod.
• príprava na skúšku – 26 hod.
Spolu: 130 hodín
Jazyk, ktorého znalosť je potrebná na absolvovanie predmetu
anglický
Dátum schválenia: 20.02.2023
Dátum poslednej zmeny: 25.07.2022
Dátum schválenia: 20.02.2023
Dátum poslednej zmeny: 25.07.2022